skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martínez-Moro, Edgar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. [Formula: see text]A hyperbolic code is an evaluation code that improves a Reed–Muller code because the dimension increases while the minimum distance is not penalized. We give necessary and sufficient conditions, based on the basic parameters of the Reed–Muller code, to determine whether a Reed–Muller code coincides with a hyperbolic code. Given a hyperbolic code [Formula: see text], we find the largest Reed–Muller code contained in [Formula: see text] and the smallest Reed–Muller code containing [Formula: see text]. We then prove that similar to Reed–Muller and affine Cartesian codes, the [Formula: see text]th generalized Hamming weight and the [Formula: see text]th footprint of the hyperbolic code coincide. Unlike for Reed–Muller and affine Cartesian codes, determining the [Formula: see text]th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the [Formula: see text]th footprint of a hyperbolic code that, sometimes, are sharp. 
    more » « less